Honors Pre-Calculus

Summer Review Packet

<u>Algebra 1</u> Writing Equations of Lines Graphing Linear Equations

<u>Geometry/Trig</u> Pythagorean Theorem Special Right Triangles (30-60-90 and 45-45-90) Right Triangle Trigonometry $S \frac{o}{h} C \frac{a}{h} T \frac{o}{a}$

Important Topics from Algebra II/Trigonometry Solving Equations, Absolute Value Equations, and Inequalities **Operations with Radicals and Imaginary numbers** Solving Radical Equations Quadratics -FACTORING -Solving for roots -Quadratic form, intercept form, vertex form -Completing the square **Properties of Exponents including Rational Exponents** Logarithms -Expanding and condensing -Logarithmic to exponential form and exponential to logarithmic form -Solving Logarithmic Equations -Graphing logarithms and exponential functions Parent Graphs -Domain and Range (interval notation) -Transformations -inverses Operations with Functions (include restrictions where appropriate) **Piecewise Functions** Polynomials 2nd, 3rd, 4th, and 5th degree -End behavior -Relative maximum and relative minimum -Intervals of increasing and decreasing -Rational Root Theorem -Synthetic division -Complex roots **Rational Expressions** -All operations $(+, -, x, \div)$ -Graphing (asymptotes, holes, domain and range)

Write the equation of the line using the information given.

1. Through the points (-1, 3) and (2, -1).

$$y = -\frac{4}{3}x + \frac{5}{3}$$

2. Perpendicular to the line 2x - 3y = 4 and through the point (4, -2).

$$y = -\frac{3}{2}x + 4$$

3. Parallel to x = -1 and through the point (-2, 3).

$$x = -2$$

Graph the following lines.

Solve each of the following for x.

13.
$$\frac{1}{3}x^3 = x$$

 $x = 0, \pm\sqrt{3}$
14. $x^4 - 16 = 0$
15. $x^2 - 8x + 3 = 0$
 $x = \pm 2, \pm\sqrt{2}$
 $x = 4 \pm \sqrt{13}$

16.
$$2x^2 - 21x + 49 = 0$$

 $x = \frac{7}{2}, 7$
17. $\frac{x}{3} - \frac{x-2}{4} = 2$
 $x = 18$
18. $\sqrt{x} - 2 = x - 8$
 $x = 9$

Simplify each of the following.				
19. √ <u>72</u>	20. $\sqrt{40} + \sqrt{90}$	21. $\sqrt{50} - \sqrt{8}$	22. $2\sqrt{3} \cdot 3\sqrt{6}$	
$6\sqrt{2}$	$5\sqrt{10}$	$3\sqrt{2}$	$18\sqrt{2}$	
23. $\frac{2}{\sqrt{2}}$	24. $\frac{3}{\sqrt{6}}$	25. $\frac{\sqrt{10}}{\sqrt{5}}$	26. $\frac{\sqrt{30}}{\sqrt{45}}$	
$\sqrt{2}$	$\frac{\sqrt{6}}{2}$	$\sqrt{2}$	$\frac{\sqrt{6}}{3}$	
27. $\sqrt{-10} \cdot \sqrt{-15}$	28 . √−45	29. $\frac{2}{3-i}$		
$-5\sqrt{6}$	$3i\sqrt{5}$	$\frac{3+i}{4}$		

Write each exponential equation in logarithmic form.

30. $5^x = 625$	31. $10^x = 1000$	32. $e^3 = 20.085$	33. $u^v = w$
$\log_5 625 = x$	$\log_{10} 1000 = x$	ln20.085 = 3	$\log_u w = v$

Rewrite each logarithmic equation in exponential form.

34. $\log_2 \frac{1}{8} = -3$ 35. $\ln 143 = x$ 36. $\log_4 64 = 3$ 37. $\log \frac{1}{100} = -2$ $2^{-3} = \frac{1}{8}$ $e^x = 143$ $4^3 = 64$ $10^{-2} = \frac{1}{100}$

Evaluate without using a calculator.

38. $\log_x x^8 =$	39. $\ln e^3 =$	40. log 100 =
41. $e^{\ln 12} =$	42. $\log_{27} 3 =$	43. $\log_3 81 =$
38. 8	39. 3	40. 2
41. 12	42. $\frac{1}{3}$	43. 4

Expand each logarithmic expression. Your answer may not contain any exponents or radicals.

44. $\log\left(\frac{x^3\sqrt{y+1}}{z^2}\right)$ $3\log x + \frac{1}{2}\log(y+1) - 2\log z$ $lny + \frac{1}{2}lnx - lnw - lnz$

Condense each logarithmic expression.

46. $3\log x + 2\log y + \frac{1}{2}\log z$ 47. $3\ln x + 2\ln 5 - \ln(x+2)$

$$\log x^3 y^2 \sqrt{z} \qquad \qquad \ln \frac{25x^3}{x+2}$$

Solve the exponential equations. Round any irrational answers to the nearest thousandths. 48. $3^{x-2} = 27$ 49. $4(5^{x+2}) = 32$ 50. $3e^x + 5 = 24$ x = 5 x = -0.708x = 1.846

51. $\log_4(x - 1) = 2$ x = 17 52. $\ln x = 2$ x = 7.389 53. $\log x = 6$ x = 1,000,000 **Application Problems.**

Simple Compound Interest: $A = P \left(1 + \frac{r}{n}\right)^{nt}$ Continuous Compound Interest: $A = Pe^{rt}$

- 54. Emily plans to put her graduation money into an account and leave it there for 4 years while she goes to college. She receives \$1,050 in graduation money to college that she puts into an account that earns 4.25%. How much money will be in Emily's account at the end of four years if it is compounded...
- a.) Quarterly?
- b.) Monthly?
- c.) Continuously?
- d.) If the interest is compounded semi-annually, how long would it take for the balance to reach \$2,000? Round to the nearest hundredth of a year.

A. \$1,243.45

B. \$1,244.20

C. \$1,244.57 D. 70.07 years

Find the inverse of the function. Graph both the function and its inverse. Confirm that the functions are inverses algebraically.

59.
$$f(x) = (x - 2)^3 + 1$$

 $f(x)^{-1} = \sqrt[3]{x - 1} + 2$
 $f(f(x)^{-1}) = (\sqrt[3]{x - 1} + 2 - 2)^3 + 1$
 $= (\sqrt[3]{x - 1})^3 + 1$
 $= x - 1 + 1$
 $= x$

Perform the requested operations given the functions.

$$f(x) = x - 3$$

$$g(x) = x^{2} - 9$$
60. $f(x) + g(x)$

$$= x^{2} + x - 12$$

$$g(x) = x^{2} - 9$$
61. $f(x) - g(x)$

$$= -x^{2} + x + 6$$

62.
$$\frac{f(x)}{g(x)}$$
 63. $\frac{g(x)}{f(x)}$

$$= \frac{1}{x+3} = x+3 = (-\infty, -3) \cup (-3, 3) \cup (3, \infty) = (-\infty, 3) \cup (3, \infty)$$

64.
$$f(g(x))$$
 65. $g(f(x))$

$$=x^2-12$$
 $=x^2-6x$

66.
$$f(g(-2))$$

= -8
67. $f(x) \cdot g(x)$
= $x^3 - 3x^2 - 9x + 27$